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The bane of Lagrangian hydrodynamics calculations is the premature breakdown
of grid topology that results in severe degradation of accuracy and run termination
often long before the assumption of a Lagrangian zonal mass has ceased to be valid.
At short spatial grid scales this is usually referred to by the terms “hourglass” mode
or “keystone” motion associated, in particular, with underconstrained grids such as
quadrilaterals and hexahedrons in two and three dimensions, respectively. At longer
spatial lengths relative to the grid spacing there is what is referred to ubiquitously as
“spurious vorticity,” or the long-thin zone problem. In both cases the resultis anoma-
lous grid distortion and tangling that has nothing to do with the actual solution, as
would be the case for turbulent flow. In this work we show how such motions can be
eliminated by the proper use of subzonal Lagrangian masses, and associated densities
and pressures. These subzonal pressures give rise to forces that resist these spurious
motions. The pressure is no longer a constant in a zone; it now accurately reflects the
density gradients that can occur within a zone due to its differential distortion. Sub-
zonal Lagrangian masses can be choosen in more than one manner to obtain subzonal
density and pressure variation. However, these masses arise in a natural way from the
intersection of the Lagrangian contours, through which no mass flows, that are asso-
ciated with both the Lagrangian zonal and nodal masses in a staggered spatial grid
hydrodynamics formulation. This is an extension of the usual Lagrangian assumption
that is often applied to only the zonal mass. We show that with a proper discretization
of the subzonal forces resulting from subzonal pressures, hourglass motion and spuri-
ous vorticity can be eliminated for a very large range of problengs.oss Academic Press
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522 CARAMANA AND SHASHKOV

1. INTRODUCTION AND STATEMENT OF PROBLEM

Lagrangian hydrodynamics algorithms have been in wide use for perhaps the lon
time of any numerical methods employed for the solution of complex problems of flu
flow [1]. The major assumption of all of these algorithms is that one can define a m:
element inside a zone such that, although the zone changes its shape as its vertices m
time, no mass crosses its boundaries. Thus the mass element is “tracked” in time. Newt
laws of motion are most naturally written in Lagrangian form when applied to point mass
or rigid bodies. The Lagrangian zone mass concept can be viewed as an extension o
notion when considered with respect to a staggered grid in space where intensive varic
such as density, pressure, and specific internal energy are defined in a zone, and coort
position and velocity are located at the points or vertices, usually connected by straight i
that define the circumscribed zones. It is these kinds of schemes that we will be concel
with here, although conceptually simpler Lagrangian algorithms where all variables
point-centered have also been widely investigated. In this paper we will extend the i
of a Lagrangian zone mass to remove the numerical difficulties that we refer to loosely
“anomalous grid distortion” that have plagued these methods since their inception.

The Lagrangian assumption of a constant zonal mass is valid for problems that might |
be described as compressible, deterministic flow where mixing instabilities and turbule
are not fully developed. These methods are very useful when a high resolution of interfe
and other sharp discontinuities is desired. For strictly incompressible flow the assumptio
a Lagrangian zonal mass breaks down rapidly. However, both Eulerian and ALE (arbitr
Lagrangian—Eulerian) codes developed specifically to simulate these kinds of problem:
ten employ a splitting method whereby the “physics” is computed by a separate Lagranc
step. Then the kinematical questions of grid point location and the fluxing of variables
new zones and points is dealt with separately. Since we are concerned with the Lagrar
step of this procedure, the results given here are germane to these algorithms.

The anomalous grid distortion that we are concerned with can be placed into two br
categories. The first of these contains the hourglass modes that appear as a global
distortion at the shortest spatial grid scale. They were first noted in the work by Maencl
and Sack [2]. These motions result because a quadrilateral or hexahedral grid in two ort
dimensions, respectively, is underconstrained with respect to the total number of deg
of freedom of the grid [3, 4]. The second type of anomalous grid distortion occurs at lar
spatial scale with respect to the grid spacing. This is referred to as spurious vorticity
Dukowicz and Meltz [5], and as the long-thin zone problem by Browne and Wallick [6
Although often present in calculations, these difficulties are really only precisely definal
with respect to known one-dimensional solutions using grids that are skewed in sc
manner with respect to an ignorable coordinate in two or more dimensions. Here the solu
gradients are misaligned with the coordinate grid. This can then give rise to vorticity tha
completely absent from the known solution. The basic problem of anomalous grid distort
can be best illustrated in terms of the hourglass difficulty that is explained next.

Consider the six patterns of motion illustrated in Fig. 1 that are depicted in terms o
single quadrilateral zone where the arrows indicate the velocity vector at the grid point:
is possible to repeat any of these six patterns globally across the entire grid. They de
the six global physical motions of the grid in two dimensions: two each of translatio
extension (contraction), and shear. (Note that a pure rotation can be obtained by subtra
two patterns of shear in orthogonal directions.) A single quadrilateral has eight degree



LAGRANGIAN SUBZONAL MASSES AND PRESSURES 523

Y
——%
\j

ir———sL———-k F——k——-%

N

e

Translation

Y

A

\/

*——

>1-———-vl-————a-

T
|
——% $———p——
|
|
1
ksl

i

A

Extension v

 J
et
\ ]
—_—

A
[ SE——
A
——

Shear ]

FIG. 1. Global physical modes of a quadrilateral grid.

freedom corresponding to the two independent directions of each of its four defining po
However, only the six global patterns shown in Fig. 1 are physical; an additional two patt
are the unphysical hourglass motionsin each independentdirection that are also global
the grid. For this reason quadrilateral grids are referred to as “underconstrained” [3, 4

A pure hourglass motion in two dimensions consists of a checkerboard pattern wi
velocity field in a given direction that alternates in sign at every grid point, as shown in Fig

FIG. 2. Hourglass pattern of zones about pantiashed lines indicate median mesh.
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There is one such pattern in each direction for a two-dimensional quadrilateral grid. In th
dimensions there are more such patterns associated with hexahedral grids [4]. In Fig.
zones are constructed from dynamical grid points shown as solid dots that are conne
by solid lines with associated arrows indicating the direction of the velocity field, whic
alternates sign from point to point. Shown as dashed lines is the so-called median n
that connects midpoints of sides to zone centers. These points are defined by coordil
and velocities that are simple averages (one-half or one-quarter) of those of the points
define the zone.

Let us next consider how the dynamical equations respond to the eight global pattern
motion of a staggered spatial grid composed of quadrilateral zones. To obtain a dynan
response to some motion the equations for force and internal energy must exhibit a rea
to the motion. In Lagrangian form the equations for acceleration from a force due tc
pressurep, and for the evolution of the specific internal eneggwre given as

dv

Pa =-Vp, 1
de

Pa =—pV-v, 2

where the pressure is obtained from an equation of spate, p(e, p). If the volume of

a zone does not change, its density is constant, and also, the specific internal energy
not change since in this case- v = 0. This latter result follows from the equation for the
continuity of mass written in Lagrangian form: for= M,/V,, whereM, is the constant
mass of a zone with volumé,, this is

1dV,

Of the eight global motions that have been enumerated it is thus seen that only the ones
responding to extension (contraction) elicit a direct response from the dynamical equat
independently of the boundary conditions; the others leave the volume of the quadrilat
zone unchanged. However, both the shear and translation patterns are physical and
no difficulties. The difficulty is with the unphysical hourglass patterns. They are genera
found to grow with time at a rate that is not easy to predict.

A possible solution to this problem that has long been recognized is to allow for st
zonal volumes, Lagrangian masses, and thus, subzonal densities and pressures that pi
subzonal forces, since the root of the difficulty is that the zone volume does not cha
in response to hourglass motion. Focus on paias shown in Fig. 2. If we consider the
four subvolumes shown as hatched regions that all contain pa@sta vertex, then these
subvolumes do change as it moves, as can be seen from this figure. If we consider the m
inside these subzonal volumes to be constant, Lagrangian objects in addition to the -
mass of a zone, then from these changing subvolumes separate densities, and thus pre:
can be computed. If we measuresagsthe difference of the pressure in these subzones ar
the unchanged mean zone pressure, then we obtain qualitative vadyestafut point as
shown in Fig. 2. These pressures produce forces that obviously oppose its motion and
that of the hourglass pattern everywhere across the grid. At the same time it is importar
note that they provide no resistance to the physical patterns of either translation or shea
extension (contraction) both the zone and subzone volumes change. In this case the v
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of §p that are obtained are the same as those that are found from subtracting the pre:
that result from refining the grid by a factor of two in each direction from the zone press
of the unrefined grid. Thus, these subzonal pressures do not oppose this physical mo

The major aim of this paper is to develop the consequences of the inclusion of subz
forces into otherwise standard Lagrangian algorithms. To this end the following issues |
be considered: the choice of and justification for subzonal Lagrangian masses, the p
dynamical treatment of the subzonal forces that arise from them, their efficacy on rele
test problems including limitations with regard to possible anomalous grid stiffening, :
also, their effectiveness in counteracting the spurious vorticity, or long-thin zone probl
that is not as straightforwardly defined as is hourglass motion.

The organization of the rest of this paper is as follows: In the next section we brie
review previous work on this subject. This essentially consists of two different approac!
filters, where the unphysical motion is detected and removed kinematically; and, dynan
approaches such as subzonal Lagrangian masses and associated pressures, whic
procedure that we generalize, and certain forms of artificial viscosity that respond to h
glass motion and spurious vorticity. The framework in which we perform control volur
discretizations of the equations is briefly discussed in Section 3. Here is introducec
concept of “compatibility” that allows us to compute the correct change of internal ene
that arises from subzonal forces. In Section 4 we define the subzonal Lagrangian m
that we will use in this study. These are either quadrilaterals or triangles in two dim
sions. Section 5 gives the manner in which the force calculated from the subzonal pres
is to be utilized to move the dynamical grid points. We treat the subzonal pressure
perturbation and employ a separate force calculation from that used for the mean pre
of the zone. Here we introduce the concept of nondynamical points. These are points
have forces associated with them but have velocities that are computed as averages o
of the dynamical points whose evolution is determined by the momentum equation.
force differencing is not unique since the force that is exerted on a dynamical point fron
adjacent zone becomes dependent on the path of integration taken through the zone
the zone pressure is no longer a constant. This leads to the definition of a “merit fac
to multiply the strength of these forces. This is not unlike the choice of coefficients in
treatment of artificial viscosity. The important concern is to show that such coefficie
although somewhat case dependent, have a wide enough dynamic range so that the ¢
problems that can be computed using this technique are not limited to a narrow set. Hov
merit factor can be easily automated is also considered. In Section 6 we discuss the prc
of the choice of grid elements in two dimensions. This question is: Under what conditi
are triangles artificially “stiff” for compressible flow problems? Quadrilaterals tend to
artificially “floppy.” Finally, in Section 7 a range of numerical results is presented to shc
the effectiveness of our treatment both with respect to previously published work and
respect to the sensitivity of the merit factor that we have introduced into this formulati
We close with a brief summary of our conclusions.

2. PREVIOUS WORK

Here we discuss the general types of spurious vorticity treatments that have been ut
to attack this problem. For high spatial frequency hourglass motions, filters have t
devised that detect and separate the spurious motion from the mean physical velocity
[3, 4]. The problem with this approach is that the patterns that are sought are global a
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the grid while the filters that have been devised to detect them are usually based on |
samplings of the velocity field. If there is a large spatial scale separation between the h
frequency spurious, and low-frequency physical, velocity field, then to lowest order t
spurious velocity field carries no kinetic energy and the filtering approach can be v
effective. If this is not the case the filters will pollute the physical velocity field, particularl
if the underlying grid is not regular. Then total energy will not be conserved unless t
modified nodal kinetic energy is converted into internal energy of the zones. Howev
since the filtering approach is usually kinematical with no forces directly computed, ene
conservation can only be achieved on an ad hoc basis.

An approach that has been employed with high speed flow problems is to utilize
artificial viscosity that is edge-centered [7], that is, consists of a separate discrete artifi
viscosity term with respect to each edge of a zone. These separate viscosity terms
respond to hourglass patterns and spurious vorticity; they can turn on whenever an ¢
of a zone is under compression (one must set an appropriate condition for this). They
provide some resistance to these motions [8]. However, it is not always clear to what de
they artificially damp the physical solution. We also employ an edge-centered viscos
that utilizes advection-type limiters that reduce its effect in regions where strong shc
disturbances are not present [9]. The question of the use of artificial viscosity to maint
grid integrity versus our subzonal pressure approach will be addressed in Section 7 w
we consider numerical examples.

Another approachis to subdivide a quadrilateral mesh into four triangular subzones wt
masses are taken to be Lagrangian. In the temporary triangular subzoning (TTS) treat
[6] not only is this done, but the work due to both pressure and artificial viscosity forc
is also deposited in the triangular subzone volumes. Then a pressure is calculated for
subzone that is used to compute the acceleration of its two adjacent nodal points. At
end of each timestep the internal energy is averaged across the zone to give a mean
for the start of the next timestep. This is performed without reference to any characteri
timescale, and thus has no physical justification. In a modified form known as soft-TTS
the density in the triangles is relaxed toward the zone average using a timescale detern
by the quadrilateral length scales divided by the zone sound speed. A variant of the -
procedure wherein the specific internal energy is always taken to be constant within a z
has been pursued by Burton [10]. Here also, triangles are used as the subzones, and in
cases the density is relaxed with time throughout the zone.

Work by Golovizninet al.[11] parallels the TTS approach to a degree but is somewh
more general. They construct an arbitrary number of Lagrangian subzonal entities that
be either triangular or quadrilateral with respect to a grid with quadrilateral zones. Th
subzones are then constrained to have the same specific internal energy, but with diffe
densities because of their separate volumes and constant, Lagrangian masses. Altt
an arbitrary number of subzones can be constructed in a given quadrilateral only a s
number are utilized in practice. The general procedure that we employ to define the auxil
points used in constructing any such subzones, their associated forces, and how the
utilized in a force calculation is discussed in Section 5. That employed by Goloviznin a
co-workers can be viewed as a subset of the line of reasoning given in that section.

The procedure employed by Dukowicz and Meltz [5] is very specialized. They evol
a separate equation for the vorticity in addition to the usual velocity field. The “correc
velocity field must then be reconstructed on every timestep from its proper divergence
vorticity, utilizing appropriate boundary conditions. There is related work by Burton th
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is termed “spurious excess vorticity damping” [12]. In this method a “true” vorticity

calculated on the basis of the curl of the velocity field computed with respect to the z
centers in a staggered grid formulation. The curl of the velocity field computed with resy
to an edge is then compared to these zone values. Based on the discrepancy of tt
guantities forces are calculated and used in the momentum equation to drive this differ
to zero. Although a “spurious” component of the velocity field is deduced as in the fil
approach, this scheme will automatically preserve momentum and energy and is mucl
costly than that of Dukowicz and Meltz. The main difficulty with all of these methods
how to decide what part of the velocity field is spurious and what part is not.

Finally, one can simply utilize triangles as grid elements in two dimensions. Althou
there is no hourglass motion associated with these elements in a staggered spatial gr
mulation, this introduces additional difficulties. The most important of these is the artific
stiffness of triangular elements for certain flow conditions. This is discussed in Sectic
since it impacts the choice of subzonal masses that one declares to be Lagrangian. Als
use of triangular zones does not address the spurious vorticity issue still present at e
scales larger than the grid spacing.

3. COMPATIBLE DISCRETIZATION

In order to establish the framework used in the rest of our development we consider in
crete form the conservation of total energy, the momentum equation, and the internal er
equation. Our purpose is to present a brief summary of what is known as the “compati
discretization of these equations that is valid for a staggered spatial placement of vari
[13]. In this discretization the three mentioned equations are differenced such that if
discrete form of any two are specified the third results as an algebraic identity. Thus, ¢
one specifies a discrete form for conservation of total energy and the equation for inte
energy, the discrete form of the momentum equation follows automatically. In a comple
reciprocal manner the discrete form of conservation of total energy and the momer
equation can be specified, and the discrete version of the internal energy equation re
This procedure is equivalent to specifying in discrete form a vector differential opere
(say the divergence that is used to compute volume changes in the internal energy equ
from which the conjugate operator (the gradient used to compute force in the momer
equation) is then derived, or vice versa. When viewed in this way this is an exampl
the method of support operators [14, 15]. If the force in discrete form is specified in sc
manner that cannot necessarily be viewed as the direct discretization of the vector ope!
acting on a function, which is the case for some of the results given in Section 5 anc
our particular form of artificial viscosity [9], then a compatible form of discretization
the only one that will allow us to compute in a systematic manner the rate of work d
by these forces as needed for the complete specification of the internal energy equi:
An additional benefit of a compatible formulation is that total energy is always conser
to roundoff error in discrete form. While the full discussion of compatibility is present
elsewhere [13], the minimum of results needed for the rest of our work is given next.

Conservation of total energy can be written as

> Mg+ Y Mpv3 /2 = Boundary Work (4)
z p
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wheree, is the specific internal energy ard, is the mass in zone, M, is the mass
associated with the point or noge andv, is the grid point velocity. Thus the internal and
kinetic energies are defined in the zones and at the grid points, respectively. We can wit
loss of generality neglect the boundary work term in Eq. (4) and take its time variation
obtain

z P

Heres denotes the change of a quantity in a discrete time increment. Note that in obtain
Eq. (5) from Eg. (4) we have considered both zone and node masses to be constant.
The force equation at poirg can be written as

dv
Mpd—tp =Fp=> 1P (6)
z

In this equation we have defined a new objéftthat we call the corner force. This force
acts from zone and is applied to poinp such that if one sums all corner forces common tc
this point, and that also belong to the neighboring zones that contain this point as a vel
then the total force acting on poipt Fy, is obtained. The corner force is thus defined with
two indicies: one that refers to the zone in which it is constructed, and one indicating
point onto which it acts. In our notatiofi = frz), except that we always sum this object
with respect to the lower index. The explicit functional form of the corner force is, as ye
undefined. How this may be defined for forces arising from subzonal pressures is give
Section 5, and is the major topic of this paper.

The rate of work done by corner forces of any functional form, and thus, the change
internal energy due to them can be computed “compatibly” utilizing conservation of to
energy. The main point is that the rate of exchange of kinetic energy from gridpaomt
zonez due to the corner forc® is simply the dot product of this force into the velocity of
gridpoint p. (This can be rigorously justified [13].) Then it follows from Egs. (5), (6) aftel
performing a discrete change of summation by parts that, in general, the change in inte
energy produced by any corner forég, can be generically calculated by

> pfp - VvpAt
oe; = SRR VIR )
wheresde, is the change of the specific internal energy of a zone in afitét is Egs. (4),
(6), (7) that constitute an algebraic identity for an arbitrary form of the corner force obje
fo.

Next, as an example, we give a realizatiofifofor a pressure, that is constant in a zone
using control volume differencing. Shown in Fig. 3 are the eight half-edge vesttingat
have the direction of the outward normal to the sides of the quadrilatarad magnitudes
equal to one-half of the length (area) of their respective sides. From these vectors the cc
force associated with the zomand the poinp with respect to the mean zone presspyés
simply given asP = p,(az +ag). Thatis, this force acts from zorzeand is applied to point
p due to the pressurp,. This is the basic form of the usual control volume differencing
that we utilize in the rest of this work [16, 13]. If the sum indicated in Eq. (7) is compute
analytically, then the result is found to be equivalenttp,d V,/ M, [13], whered V, is the
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FIG. 3. Quadrilateral zone and median mesh for defining corner mésslatched lines denote Lagrangian
boundaries of coordinate-line (solid) and median (dashed) ragahe outward normals to coordinate-line mesh.

discretized functional form of the change in volume of zarie a timestep; and thus, this
yields the usual result.

In the remainder of this paper, in addition to the mean zone pressukee consider
separate subzone pressupéshat arise, through the equation of state, from the differen
8p between the subzone density and the zone density. We dgfiee pS — p,, and are
concerned with constructing difference equations for the perturbed corner forces, denot
55, associated with the perturbed pressurege, is always constantin space for any giver
zonez.) In this case the change in internal energy due to these forces is always comy
compatibly by insertingfy in place off ; in Eq. (7).

4. SUBZONAL LAGRANGIAN MASSES

We next define what is meant by Lagrangian subzonal masses. Although this discu:
is given in terms of a quadrilateral grid in two dimensions, all of the arguments apply
any type of grid in any number of dimensions.

In Fig. 3 we show a quadrilateral zone labefeghd single out one of its defining points
(vertices) and label ip. Aside from the grid points indicated by solid dots where th
velocity is stored, we define with asterisks auxiliary points connected by dashed lines
grid points are connected by solid lines. The coordinates of these auxiliary points are e
zone centers or side midpoints of a given zone, as previously described. We refer to the
lines that connect grid points as the coordinate-line mesh, while the dashed lines conne
the auxiliary points define the median mesh. The mass insidez ¢inat we denote all,
is considered to be a constant in time with its initial value. The boundary of this zon
shown as a closed segment consisting of four straight lines of the coordinate-line mest
is hatched to indicated that through this boundary no mass is allowed to flow. Simile
we show about poinp a closed boundary that consists of the median mesh connec
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through the midpoints of sides and the zone centers about this point. Inside this bount
is contained the mass denoted\ag that is associated with poimt This boundary is also
shown as hatched indicating that no mass is allowed to flow through it. That is, in addit
to the zone mass being constant we postulate that the pointihaisalso a constant in
time with its initial value. This is an extension of the usual Lagrangian assumption tt
is most often only applied to the zone masses. We now explore the consequences of
additional assumption.

The mass inside the hatched region in Fig. 3 is defined by the two side midpoints adja
to point p, the center of the zong, and the pointp. This region is also defined by the
intersection of median mesh and coordinate line boundaries through the aforementic
points. Since mass is not allowed to flow through either of these boundaries the mass ir
this volume must also be a constant in time with its initial value. This volume we defi
as the quadrilateral subzone corner volume whose associated mass we fahahéscall
this the corner mass associated with the zone izdand the grid pointindey. So defined,
the corner mass is always a quadrilateral in two dimensions regardless of the shape ¢
zone of which it is a part. Now we can proceed in the other direction and define the zc
massM; as the sum of all corner masses common to a zone, and the nodaWipassthe
sum of all corner masses common to a grid point. This is given below as

Mz=>mi  Mp=>» mb. ®)
p z

As with our previous definition of corner forcesy; =m?, but summations always take
place with respect to the lower subscript.

Note that one could equally well have declared the corner mass as defined above to
constant, Lagrangian object and then the Lagrangian character of both the zonal and r
mass follows from their definitions as given by Eg. (8). In most algorithms where the no
mass is considered Lagrangian in addition to the zonal mass the consequences deduc
the explicitintersection of Lagrangian boundaries have beenignored. The subzonal den:
arise from dividing these subzonal Lagrangian masses by their associated volumes.

In addition to considering the corner masses Lagrangian we will also treat the case wl
a quadrilateral is subdivided, using the zone center point and the pairs of points of e
side, into four triangular masses that are considered to be Lagrangian. In this instance
zone and node masses are also Lagrangian from Eqg. (8), where one-half of the mass of
of two triangular subzones contribute to each corner mass. The assumption of Lagran
triangular subzonal masses is interesting for historical reasons since they have been
in the TTS context, also, because the subzonal forces associated with subtriangle:
conceptually easier to investigate, and because the use of triangles versus quadrilater
grid elements is instructive to consider in this new context.

5. SUBZONAL FORCES/NONDYNAMICAL POINTS

Suppose that we integrate the fluid equations with higher order formulas such that
are given more than one value of the pressure inside a zone. Then using some cf
of interpolant the pressure at every position inside the zone can be constructed, thc
this interpolation is not unique. Next we must decide on an integration path for col
puting the force through the zone that is due to pressure; this force is then appliec
the dynamical points of this zone. One might use the median mesh with straight lir
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connecting the side midpoints of the zone with the zone center point. However, this f
will be different if this path of integration is curved in some manner. The force is ps
independent through a zone, and depends only on the path entry and exit points,
when the pressure is constant in the zone; this follows from the simple addition of \
tor lengths inside the zone all multiplied by the same common valyg.ofhus we see
that depending on the choice of interpolant, and the path of integration through the z
different values of the force applied to a dynamical point will be obtained. Also, sir
these paths of integration are common to two adjacent points of a zone the force
plied to one point will be equal in magnitude and opposite in direction to that appliec
the other point. In this way Newton’s third law is always obeyed and total momentun
conserved.

Instead of following the procedure outlined above we find it more transparent and p!
ically motivated to utilize a different approach. In place of first choosing an interpolan
define the pressure throughout a zone we treat the difference in the subzonal pressu
the mean zone pressure as piecewise constant in subzonal volumes that are either
gles or quadrilaterals in two dimensions. Then the forces due to these piecewise cor
perturbed pressures can be calculated along the boundaries of these subzones. The
all be accounted for with respect to the dynamical points. However, this can be don
more than one way consistent with momentum conservation and as a consequence t
force on the dynamical points from the same set of subzonal perturbed pressures car
different values depending on what choices are made. This entire procedure can be vi
as the equivalent of defining different interpolants and integration paths as noted at
However, to allow more flexibility we multiply the forces that result from a given choic
by a nondimensional factor that can be used to connect the magnitudes of different
cretizations that could have been made. This factor can also be allowed to vary on a
basis consistent with momentum conservation. This we call the “merit factor.” The fo
differencings that can be obtained by considering the subzonal perturbed pressures
piecewise constant necessitates the introduction of the concept of nondynamical poil
topic we next address.

By nondynamical points we mean those points that have forces associated with then
to the presence of subzonal pressures but whose velocities are slaved as a simple ave
the dynamical points that constitute the grid. Such a situation is shown in Fig. 4a wher
show a quadrilateral zone with triangular subzones. Here the zone center point, label
number 5, is nondynamical in that its position and velocity are determined as one-qu.
of the sum of the surrounding points. Our goal is to develop a procedure for treating
forces associated with nondynamical points. The first constraint in dealing with subz
perturbed forces is conservation of momentum, which is now briefly considered in disc
form.

Conservation of momentum for a pressure that is constant in a zone takes on an extre
simple form. Conservation of momentum is the statement that the sum of all forces actin
all dynamical points be equal to the total applied boundary force. However, pressure e
a force normal to all surfaces of a closed zone. From this fact it follows that conserva
of momentum is true on a single zone basis. To see this consider the sum of the pre
forces taken by zones rather than by points. This yields

Ziﬁz = Zi pea; = sziaj =0, ©)

z i=1 z i=1 z
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FIG. 4. (a) Quadrilateral zone: force contours for triangular subzonal forces differenced as Egs. (11), (
(b) Quadrilateral zone: force contours for triangular subzonal forces differenced as Eq. (14).

for the case when the boundary force vanishes and where vectaesthe outward surface

normals shown in Fig. 4a. Now, sing® is arbitrary this equation can only be satisfied
on a single zone basis. That this is true follows from the fact that the zone is clos
since the sum of the surface normals of any closed region is zero. Thus, conserve
of momentum for a constant pressure in a zone is simply the topological statement
the zone is simply connected and closed. Since a single zone can be constructed a
sum of all of its subzones, the sum of all of the subzonal forces associated with subz
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pressures, each constant in their respective subzones, must be equal to zero. We jus
to account for all of them when distributing them among the dynamical points that m
up the zone. Then their net momentum contribution is zero. This is the principal critel
that we use in dealing with subzonal forces. However, this does not yield a unique f
differencing; the subzonal forces can be distributed among the dynamical points in n
ways that are found to give different results, as previously discussed. This gives ris
the aforementioned “merit factor” that can be zone dependent and multiplies all subz
forces of a given zone. Since momentum is conserved on a single zone basis this i
consistent with momentum conservation. This factor serves to connect the different stre
effects of the force discretizations that we now develop. These are all based loosely o
idea that consistent with momentum conservation the subzonal forces should be distril
to the corner forces associated with the dynamical points in some unbiased, symme
manner.

We begin our discussion of how to distribute forces from nondynamical to dynami
points using the triangular subzones depicted in Fig. 4a. This figure shows eight vec
g, that are the outward half-edge normals to a quadrilateral zone. Although here eact
of half-edge vectors are equal, this is not always the case [17] and for the discussior
follows it is convenient to keep them separate. Inside we show four subtriangular zc
labeled by the circled numbers one to four, and formed by four half-length diagonals wt
normals are labeleD;,i = 1---4. There we draw the force “contours” associated with th
dynamical grid points labeled 1-4, as well as with the nondynamical center point 5. Tt
force contours are shown as solid curves for the dynamical points and as dotted ct
for the nondynamical center point. They are, of course, straight lines alorsy #mel D;
vectors; they are shown as curves so that they can be distinctly seen. We will somet
refer to the interior ones, such as along the half pieces of the interior zone grid viector
in Fig. 4a, as “force lobes.” We denote these forces by the ve@gris= 1---5. For the
grid point 1 and the nondynamical center point 5 these forces are given by

G1 = 8p1ay + 8padg + (8pa — 8p1)D1/2, (10)

Gs = %[(8p4 —8p1)D1 + (8p1 — 8p2)D2 + (3p2 — 8p3)Ds + (3ps — 8pa)Da],  (11)
wheresp; is the perturbed subzonal pressure in the ith triangular subzone. The easies
to find the perturbed corner force?, associated with the dynamical grid points of the
quadrilateral is to add one-quarter® to each of the force§; that is already defined with
respect to a dynamical grid point. Thus, our first form for these forces associated with :
z and pointp = 1 is given by

. 1
507 = G1 + ZGs' (12)

The above gives a general prescription for finding the force discretization when nondyn
cal points are present: treat all points as dynamical and construct a proper force differen
then distribute forces associated with the nondynamical points among the dynamical p
with the same weight factors that are used to enslave the nondynamical points to th
namical grid points.

Let us consider another possibility wherein the four force lobes that comBeisee
simply added to their respective members along each diagonal. This gives a second
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for the perturbed corner forces, which at pong 1 is
(SfE;r;Ld = G1+ (8ps — §p1)D1/2. (13)

In Fig. 4b we show the vecto& that are normals to the lines connecting the edge midpoin
to the zone center point. These vectors define the median mesh. From this figure itis app
thatS, = —(D; + ag) andS; = a; — D4, so that Eq. (13) can be rewritten as

502 = —0PaSs + SP1Sy. (14)

This is the usual median mesh force differencing that works automatically for triangu
subzonal pressures, and which has been used previously [6, 10]. This is illustrated by
force lobes drawn in Fig. 4b. The difference between the two corner force forms given
Eqg. (12) and Eq. (14) is that more averaging of forces is present with Eq. (12), and less @
effect will be seen for the same values of subzone perturbed pressures. Although nume
results show that this problem is not very acute for subtriangular forces, it becomes m
more severe for subquadrilateral forces. This is our next topic.

In Fig. 5a we show the same quadrilateral zone, along with half-edge vegtarsl
median mesh normal vecto®, that together define the subzonal quadrilaterals. Thes
subzones as well as their associated dynamical grid points are labeled as numbdrs 1
while the center point and the edge midpoints labeled 9 comprise the nondynamical
points. Proceeding as before we show in Fig. 5b the force contours associated with pc
1...9 as though they were all dynamical. Denoting these forces by the véttars have
for those necessary to construct the corner force at gm#atl the expressions

Hy = dpi(as + ag)/2

1
He = 5[59138 + 8psaz + (8p1 — 6pa) Sy,
1 (15)
H; = 5[5}91&1 + 8p2az + (8p2 — 8p1)Syl,

1
Hs = E[(Spl — 8Pa)Sa + (8p2 — 6P1)S1 + (8p3 — 8P2)S2 + (8ps — 6P3)Ss].

If we now distribute each of the forcé$ associated with the nondynamical points 59
in proportion to the weights with which these points are enslaved to the dynamical poit
then our first form for the perturbed corner force at pgint 1 becomes

— 1 1
Sff.lslt: H1+§(H6+H7)+ZH5- (16)

Once again this differencing is not unigue.

Aside from being systematic, the type of differencing of nondynamical points as given
Eq. (12) or Eq. (16) has some additional mathematical basis [11]. It arises from a variatic
principle that results in the gradient and divergence operators being negative adjoints of

FIG.5. (a) Quadrilateral zone: topology for subzonal quadrilateral volumes with nondynamical poing 5
(b) Quadrilateral zone: force contours for quadrilateral subzonal forces differenced as Egs. (15), (16). (c) Qu:
lateral zone: force contours for quadrilateral subzonal forces differenced as Egs. (17)—(20).
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other. This in turn can be viewed as choosing the divergence as the “determining opere
fromwhich to construct the gradient[14, 15]. This topic is discussed elsewhere in detail [1
Here we wish to note what happens if we continue to subdivide our subzone quadrilatel
all with separate Lagrangian masses and nondynamical defining points that are give
simple averages of adjacent points [11]. It is easy to see from the above that what we g
further averaging of the perturbed pressure forces, and that in general as we construct
and finer subzones the effect of these forces is further decreased except for special sm
one-dimensional motions of the dynamical points where they are not needed to counte
spurious vorticity anyway.

A force differencing that is preferable to the one just given can be constructed as follo
Eliminate the force contribution of the zone cenitgy by combining its force lobes with
those of the adjacent nondynamical midpoint members, just as was done in the triang
case. In addition, combine the edge vedpicontributions that are associated with the
midpoints of the sides in favor of the dynamical grid points. This gives the force contot
shown in Fig. 5¢ from which we define the new force vectdfsFor points 1, 6, 7 these
are given by

H7 = dpi(a1 + ag),
Hg = (8p1 — 8pa)Ss, (17)
H? = (8p2 — 8p1) S,

and analogously for the other points in Fig. 5c, except thatiHgwe 0.

The force contours shown in Fig. 5¢ lend themselves to a simple interpretation; nam
there are the subzonal forcks - - - H), that are computed along the coordinate-line mes|
and directly applied to their respective dynamical points, and there are the “recoil” of the
forces that are shown with respect to the median mesh as the forcélpbedd associated
with the side midpoints and the common center point of a zone. These two sets of for:
individually summed, are equal in magnitude and opposite in direction. Many discretizatic
of the subzonal forces can now be thought of as just different ways of redistributing
recoil forces to the dynamical points with the forces along the coordinate-line mesh fi
as stated. Our preferred way of doing this results in our second form of the subzonal fol
in which one-half of each recoil force loli¢; - - - Hy is allotted to each of its adjacent
dynamical points. Then the perturbed corner force at ppiatl becomes

= / 1 / /
(szZr}d =H;+ E(HG + H3),

1
= dp1(ay + ag) + 5[(8p1 — 8pa)Sy + (8p2 — 8p1)Syl, (18)
= dp1(a1 + ag)/2 — 8P4Ss/2 + §P2S1/2, (19)
= (8p1+8P2)S1/2 — (8p1 + 8Pa)Sa/2. (20)

This equation has been written in several equivalent forms, all of which are important. Fr
the forms given as Eqs. (18), (19) and the fact hat S, = a3 + ag (cf., Fig. 5a) it can
be seen that the direct force given by the first term of Eq. (19) is decreased over the
Eqg. (18) by a factor of one-half because the recoil force given-Bg,(S; — Sy)/2 just
cancels this amount. Thus, this force differencing has a “merit factor” of one-half relati
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to the triangular force differencing given by Eq. (14) where no recoil forces from a gi
point act back upon it.

A force differencing with a merit factor of unity for subzonal quadrilaterals can easily
constructed by specifying the corner force at pgint 1 to be

5054 = 0p1(a1 + ) — SP2ds — SPade. (21)

In this instance the recoil force from a given point is also taken up entirely by differi
adjacent points. In the above form the corner force on point 1 includes a recoil force f
the opposite half-edge vectasandas. We prefer not to use this form because for distorte
grids itis not very symmetric, whereas for Eq. (19) we have the previously noted expres
S1 — Sy = a3 + ag, which allows us to reduce it to the form given as Eq. (20). This equati
says that the total perturbed corner force is simply the average of the adjacent pertt
pressures applied to the median mesh, which is intuitively appealing and symmetric.

We actually code the form given as Eq. (18) after multiplying it by a factor of tw
Then in all quoted results the merit factor when referenced to this form is unity. Th
is an important reason for doing this. For the case where we wish to preserve cylir
cal symmetry in Cartesian geometry, or spherical symmetry in cylindrical geometry
a wide range of conditions this is the only form that will, with grid modifications, yiel
this desired result. This is explained elsewhere [17] where a modification of both
vectorsa; andS must be performed to achieve this goal when subzonal pressure fol
are present. However, in the case where such symmetry is present only two different
ues of perturbed subzonal pressures, as opposed to the usual four, occur and one
last two terms of Eq. (18) will always vanish. After this grid modification Eq. (18) is r
longer equal to either Eq. (19) or Eq. (20). For triangular subzone pressures there is nc
zonal force differencing that will preserve the above noted symmetries for a wide rang
conditions.

5.1. Automation of Merit Factor

Although one can specify different values of the merit factor on input for a given run, t
factor can be easily automated based on the variation of the values of the subzonal der
relative to the mean density of a zone. We define the zone varabkthe maximum
subzone density in a given zone minus the mean density divided by the mean del
X = Sup(ép),/pz. Then based on this variable the merit factor for a zgrieenoted byM ¢,

is specified by
TX n
My = {sal(l_cos(_m , (22)
20(2

Mf :an, (23)
1

for x < 2a5, and as

for x > 2a,. In the above expressions we have found the settings V2,0, =0.1, and

n = 2 to be approximately optimum for a wide range of problems. These expressions
a value for the merit factor that varies monotonically and with a continuous first deriva
with respect to the variablebetween the range of values 0.@4pwith a point of inflection
atx = ay.
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Heuristically, we find that ip /0, > 0.1 then the merit factor should be increased, while
if §0/p; < 0.1 then it should be decreased, relative to the interpolation obtained usin
linear slope between 0.0 and in order to achieve near optimum results on test problem:
The latter is very much the case for low-speed flow calculations. For example, we h:
performed simulations of Rayleigh—Taylor instability with subzonal forces and we obsel
that in order to obtain the correct linear growth rate the merit factor must be less than at
0.25. Thenwe can run far into the nonlinear regime without grid tangling. The results app
qualitatively correct; detailed comparisons to Eulerian code results will be a topic of futt
work. For high speed flow calculations, such as some given in Section 7, a value of
merit factor greater than one is required to achieve results close to the optimum that ca
obtained for fixed values of this factor. With the values quotedfot:,, andn all of these
problems can be run with near optimum results.

Another simple but effective strategy for settillg is to perform a sequence of runs using
coarse spatial resolution to determine the smallest constant vaMe tiiat is consistent
with grid integrity. Then the spatial resolution can be increased to give the desired accur
We do not find the value df1; to be very sensitive to grid resolution.

6. SUBTRIANGLES VERSUS SUBQUADRILATERALS

As we have discussed earlier, the use of quadrilateral subzones associated with c
masses as auxiliary Lagrangian elements is a natural choice. However, it is useful to re\
the difficulties and limitations of using triangles as subzone grid elements since this
been the choice historically, mostly because difference schemes with subtriangles are
ceptually simpler to formulate. This is because, as seen, the force differencing can sin
be taken along the median mesh.

A limitation of triangles as grid elements is the stiffness problem for compressible flo
There are also problems associated with the use of triangles as grid elements forincompr
ble flow. The latter are discussed at length in the paper by Fritts and Boris [18] where |
goes under the keywords “counting problem” or “grid locking problem.” For compressib
flow, grid “stiffness,” an artificial resistance to the true fluid motion, can be best seen
contrasting a planar flow situation to that of a convergent flow. This is shown in Figs. 6a,
where in Fig. 6a we show a planar flow interacting with arigid wall; in Fig. 6b we show a flo
that stagnates with respectto a center of convergence. A quadrilateral grid with an underl
triangular subzoning is shown. The question to be asked here with regard to stiffnessis: [
the collapse of two geometric grid points into a common point imply a true singularity in tl
flow field? In the planar case shown in Fig. 6a the answer to this question is affirmative, si
the flow tries to collapse all four triangles of the quadrilateral and a pressure necessal
resist this occurrence is the correct physical effect. However, in Fig. 6b, where a convert
flow is shown, the physical effect is for the quadrilateral to become degenerate, formin
triangle, and no physical flow singularity occurs. A triangular zoning yields the artificiall
stiff triangles shown as shaded regions, which in the limit of convergence lose their intel
edge resulting in zero volume, and give rise to a totally unphysical grid singularity. Tt
leads to unphysically high pressures and consequent resistance to fluid flow [19].

It is for the above reason that we choose quadrilaterals over triangles as zone elem
For subzonal grid elements, as seen, this difficulty does not diminish. In addition, subz
quadrilaterals nicely match the quadrilateral zone structure. Thus, for a propagating fror
constant phase itis possible to achieve grid alignment, wherein the coordinate lines lie ne
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along and perpendicular to the phase front. Finally, studies by Golowzair{11] utilizing
a different approach come to very similar conclusions. In this work results of a norn
mode analysis of the linearized difference equations associated with a quadrilateral
with subtriangular and subquadrilateral zones are given. The smaller the natural freque
w of a grid vertex the more movement it is allowed, and the less “rigid” is the numeric
differencing. They find that if one measures the natural frequertdya purely quadrilateral
grid as unity, then for such a grid with subtriangtes= +/1.5, and for subquadrilaterals
o = +/1.25. If one triangulates a quadrilateral grid poorly, with diagonals all drawn in or
sense of direction, a much higher vatie= +/5 is obtained indicating a much stiffer grid.
In three dimensions the competition between tetrahedra and hexahedra can be vie
in much the same manner as above because we would like our three-dimensional re
to reduce to two-dimensional ones in the limit of an ignorable coordinate. Since tetrahe
reduce to triangles in two dimensions, this requirement argues for the use of grid elem
more general than tetrahedra.

7. NUMERICAL RESULTS AND DISCUSSION

Numerical results are presented to show both the effectiveness of our procedure and
the sensitivity of the calculations to the merit factor that affects the strength of the subzc
forces. All results are run with subzonal quadrilateral forces using the differencing giv
by Eqg. (18). We use an ideal gas equation of state for all problems except the bending b
case. An edge-centered artificial viscosity is employed to capture shocks [9]. The underly
differencing of the hydrodynamics equations is a control volume scheme, except for
Lazarus implosion problem where we use the area-weight variant [13, 17] in cylindric
geometry. All changes in internal energy are calculated compatibly so that total energ
always conserved to roundoff error [13]. For the sake of brevity we sometimes give o
partial problem setups and reference where the complete specifications can be found;
these have been previously published elsewhere.

Our first test example is the bending beam problem of Flanagan and Belytschko
in two-dimensional Cartesiax — y) geometry. This problem readily develops a virulent
hourglass distortion. It consists of a perfectly elastic beam that we take to be 100 cn
length and 50 cm in width that is perfectly hinged at the vertical midpoint locations of bc
of its ends (25 cm from its base); the force of gravity acts downward (negatiirection).
This region is discretized with 18 32 zones. The beam obeys a stiffened gas equation
state [20] where the pressupeand sound speet} are given in terms of the densityand
the specific internal energyby

p=a’(p—po) + (v — Dpe, (24)
cZ =aly — (y — Dpo/pl + v (y — De. (25)

For this problem we sgf, = 8.0 gm/cn?, a® = 1. x 10* cn?/s?, andy = 3. The downward

force of gravity isg=1. x 108 cm/<. The initial density ispo: initial velocity, specific

internal energy, and stress deviators are all zero. All boundaries are free except for the
hinged points for whiclv(t) = 0. The stress deviators associated with material strength &
updated in the usual manner by integrating their time derivatives; these are equal to
elastic shear modulus times the traceless symmetric strain rate tensor that is comput
in the zone centers. The stress deviators are thus zone centered, and are never subz
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the sense of the pressures used in this paper. Material strength forces are computed
divergence of the stress deviators using the usual control volume differencing impleme
relative to the median mesh. For this case weGsetl. x 102 dynes/cr.

The beam is not initially in force equilibrium and begins to execute an elastic oscillati
In the first simulation of this problem, shown in the four parts of Fig. 7, we use no subzc
pressure forces and no artificial viscosity. The beam is shown at the @5 x 10 s
in Fig. 7a where a pure hourglass distortion of the entire grid has developed but the z
have not yet become overlapping. (The supports are indicated by the hatched symt
the middle of both ends.) In Fig. 7b the beam is shown at time 5.5 x 10~ s where
zone overlapping, although severe, still allows distinct zones to be visualized. Howe
this problem can be run indefinitely without numerical failure and is continued until t
timet = 0.01 s. By this time the grid completely separates and appears as a black si
that extends ta-5000 cm in the negative verticgl direction. In Figs. 7c, 7d are shown
the velocity in the vertical direction as a function of time of two adjacent points numbe
(17, 17) and (17, 18) that initially lie at the top center of the horizontal boundary of
beam. Notice that the first point (17, 17), as seen from Fig. (7c), undergoes just over s
periods of sinusoidal motion about zero velocity; whereas the adjacent point (17, 18), wl
velocity versus time is shown in Fig. 7d, displays a linear increase in velocity in the nege
y direction with a slope of 1cm/g, which just matches the value of gravity employed it
the simulation. This pattern is repeated by every other point across the entire grid e»
for the two hinged boundary points. What is seen is a perfect hourglass pattern that re
from near perfect cancellation of all forces except that of gravity at every other point. Tt
half of the points free-fall under a constant gravitational field while the other half exec
sinusoidal motion that is approximately that of the correct oscillating beam solution w
material stress forces calculated from highly elongated zones whose length increas
gt?/2.

As just computed, this problem is ill-posed in that minor changes in the initial a
boundary conditions (using an odd number of zones or hinging the two boundary pc
slightly asymmetrically) will break this decoupling pattern of every other point. In th
instance a highly distorted and virtually random pattern of points results and the code
crash much before the final time shown. If this problem is run with all points at either
hinged with zero velocity then the hourglass pattern will still develop but will not be nea
as virulent as that shown with just fixing single points at either end. How hourglass mo
will be constrained by altering the boundary conditions in any given situation is not a pr
obvious.

In the first three parts of Fig. 8 results are given for this problem with subzonal pres:
forces using a constant merit factor of 0.25 and with no artificial viscosity. The grid w
velocity vectors at the points is shown in Fig. 8a at the tirae5.5 x 10~4s. No hourglass
distortion is present at this time or at any other time throughout the run. In Fig. 8t
shown the same plot but at tinte= 8.5 x 10~*s when the grid velocity vectors have
just changed sign from negative to positive (this could be at any such time of sever:

FIG. 7. (a) Bending beam problem: grid at time= 3.5 x 10*s, artificial viscosity and subzonal pressure
forces off. (b) Bending beam problem: grid at time= 5.5 x 10*s, artificial viscosity and subzonal pressure
forces off. (c) Bending beam problem: vertical velocity versus time for point (17, 17). (d) Bending beam probl
vertical velocity versus time for point (17, 18).
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this run) corresponding to the maximum amount of bending of the beam in any oscillat
period. One-half of a cycle later the beam returns to its initial position and the veloc
vectors change sign from positive to negative as shown in Fig. 8c. The velocity of the pc
(17, 17) in the vertical direction with respect to time is shown in Fig. 8d as the curve tt
has the highest magnitude of oscillation, and is seen to be approximately undamped
other points of this simulation, except for the two hinged boundary points, exhibit this sa
oscillatory behavior with magnitudes that vary somewhat depending on their initial locatit
Note that this curve is qualitatively similar to that shown in the extreme hourglass case
Fig. 7c: the latter has a somewhat higher oscillation frequency and a smaller amplitude.
sensitivity of these results to the number of zones used and placing of the boundary po
that was present in the previous case, has been completely removed by the use of sub
forces. The curves with smaller oscillation amplitude in Fig. 8d are a part of the ne
topic.

This problem is next run with the merit factor set to zero so that subzonal press
forces are turned off but with the aforementioned edge-centered artificial viscosity turt
on with standard settings [9]. The grid with velocity vectors is shown in Fig. 9a at tin
t=5.5 x 10™*s. It is seen that a very substantial resistance to the development of
hourglass pattern has been achieved at this time. This pattern shows itself only near the
supports. However, the velocity field is seen to be damped, over that at the same tim
Fig. 8a where no viscosity is present, both in magnitude and with respect to the direc
of these vectors; they are much more grid aligned than in Fig. 8a. The grid with veloc
vectors is shown again in Fig. 9b atthe latter time ef 9. x 10~* s just after this calculation
terminates due to excessive grid distortion near the supports. At this time the beam is a
to reverse direction of oscillation as can be seen from the velocity vectors, but the hourg
pattern has reasserted itself. Thus, what is seen is that while an edge-centered arti
viscosity can provide some resistance to hourglass motion it is not nearly as effective a:
subzonal pressure force method, and comes at the price of excessive dissipation. To fu
clarify this latter point we return to Fig. 8d where the curve with the middle-size amplituc
is the vertical velocity of point (17, 17) versus time for this problem run with both a mei
factor of 0.25 for the subzonal pressure forces and with the artificial viscosity turned
using standard parameters. The subzonal pressure forces eliminate all hourglass m
without the need for artificial viscosity. While the period of oscillation does not change tl
amplitude is seen to decrease with time. The curve with the smallest magnitude in Fig
shows the result for this same problem except that the limiters on the artificial viscosity h
been turned off so that this viscosity acts more strongly resulting in an enhanced dam
of the oscillation amplitude, as can be seen.

If this problem is run with a fixed merit factor of less than about 0.1 severe hourgle
distortion begins to occur; if it is run with a fixed merit factor of 1.0 the amplitude of th

FIG. 8. (a)Bending beam problem: grid with velocity vectors at time 5.5 x 10-*s, artificial viscosity off,

subzonal pressure forces on, merit factof.25. (b) Bending beam problem: grid with velocity vectors at time
t = 8.5 x 10~*s (maximum excursion), artificial viscosity off, subzonal pressure forces on, merit fa@®5.
(c) Bending beam problem: grid with velocity vectors at a time of minimum excursion, artificial viscosity of
subzonal pressure forces on, merit factd®.25. (d) Bending beam problem: vertical velocity versus time for point
(17, 17), subzonal pressure forces on, merit faetds.25. Three cases: maximum amplitude-artificial viscosity
off, middle amplitude-artificial viscosity on and limiters on, minimum amplitude-artificial viscosity on and limiter
off.
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oscillations is nearly the same as that seen in Fig. 8d for otherwise identical run parame
however, the frequency of the oscillations does increase by about 10%. The reason for
appears to be due to a somewhat larger effective sound speed.

We now consider a shock refraction problem in Cartesian geometry using the same
setup as Dukowicz and Meltz [5]. In this problem a piston moves from the left sendi
a shock wave through an initially cold material of unit density with a grid that is tapere
so that its right boundary is at an angle of G@lative to the vertical. This shock then
becomes incident on a second grid that is slanted but uniformly spaced at an angdle of
Reflective boundary conditions are applied to the top and bottom of both grids. The reg
composed of the second grid has an initial density of 1.5. The problem is run to a ti
t = 1.3 just before the shock starts to run off the second grid. We show results at this tir
In Figs. 10a, 10b are shown the grid with velocity vectors and a contour plot of the dens
respectively, using our base scheme and without any subzonal forces. We see that
grid tangling has occurred in the lower left hand corner next to the driving piston and lov
reflective boundary. An enlarged portion of the grid in this region is displayed in the low
right hand corner of Fig. 10a. The density contour shows a sharp contact discontinuit
the initial boundary of the two regions. The importance of this problem is that we have b
physical vorticity and spurious grid distortion present [5]. In Figs. 10c, 10d are shown 1
same results except that subzonal pressure forces have been utilized with a constant
factor of 0.25. All grid tangling has disappeared; the density contours have only chan
slightly from before. The same case has been run with a merit factor of 1.0. The gric
this time looks identical to that of Fig. 10c. In Fig. 10e we display the contour of densi
for this run and note that it has changed only slightly from the previous results. The reg
near the contact discontinuity, where physical vorticity is present, is virtually the same in
cases.

Next, we show results of the Saltzman piston problem [5, 21]. In this example a pist
moves with unit velocity from the right sending a shock across a grid that is skewed w
respect to the vertical with a one-half sinwave perturbation. The initial density is unity a
internal energy is zero. The shock reflects off a fixed boundary at the left end. We run
problem in cylindrical { — z) geometry with reflective boundary conditions at thaxis
and at the outer radial boundaryro& 0.1. The reflective boundary at tzeaxis is through
the center of the zone and there are no grid points=a0. Results for this problem are
shown at timg = 0.8 when the shock has reflected from the left boundary and is movir
back towards the driving piston. In Figs. 11a, 11b are shown the grid and a contour plo
the density, respectively, for our standard scheme with no subzonal pressure forces. All
distortion is spurious since this is a purely one-dimensional problem. The correct ans
for the density is 4.0 is the singly shocked region and 10.0 in the doubly shocked regi
Significant deviations from this result can be seen. Again we show in Figs. 11c, 11d
grid and density contours at this time but using subzonal pressure forces with a merit fa
of 1.0. Some very minor distortion remains but the answers are extremely close to the
solution.

FIG. 10. (a) Shock refraction problem: grid with velocity vectors at time- 1.3—zero merit factor. (b)
Shock refraction problem: density contourstat 1.3—zero merit factor. (c) Shock refraction problem: grid
with velocity vectors at time¢ = 1.3—merit factor= 0.25. (d) Shock refraction problem: density contours at
t = 1.3—merit factor= 0.25. (e) Shock refraction problem: density contours &t1.3—merit factor= 1.0.
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In Fig. 12 we again show results using the Saltzman piston problem but this time for \
high aspect ratio zones. Instead of the unit aspect ratio of the initial problem, we sin
extend the radial, and ignorable, direction by a factor df Tis illustrates the long-thin
zone problem mentioned at the beginning of this paper [6] as can be seen from the ma
grid distortions shown in Fig. 12a. This figure shows the result from our standard algori
at timet = 0.8 without subzonal forces. That the grid distortion for this case should
much worse than for the unit aspect ratio case is not a priori obvious since the size o
perturbation of the initial grid across the vertical length is constant. That is, the shock w
is more perpendicular to the vertical lines by a factor df d@er the unit aspect ratio case.
This places the directional perturbation of the grid relative to the solution at truncation e
levels. In Fig. 12b is shown the grid for the same case but using subzonal forces w
merit factor of 1.0. While this result is much improved and no grid tangling is present,
grid still departs from a planar front where the reflected shock is moving back towards
piston. The results shown in Fig. 12c has subzonal forces with a merit factor equal to
This is nearly perfect with densities extremely close to the true values and a coherent s
front. It is easy to construct highly curved but non-overlapping initial grids at high asp

FIG.11. (a) Saltzman piston problem: grid at tirhe= 0.8, unit aspect ratio, merit facter 0.0. (b) Saltzman
piston problem: density contours at titne- 0.8, unit aspect ratio, merit facter 0.0. (¢) Saltzman piston problem:
grid at timet = 0.8, unit aspect ratio, merit factes 1.0. (d) Saltzman piston problem: density contours at time
t = 0.8, unit aspect ratio, merit factes 1.0.
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ratio using trigonometric functions that will cover very large fractions of the solution spac
When such problems are run the same behavior is seen: large grid distortion and tang
without subzonal forces, and coherent, much-improved results with such forces and an
factor in the range from one to three. However, the Saltzman problem, owing to its strai
line initial grid, can be run at unit aspect ratio while the others cannot, and will alwa
result in a grid that binds. Thus, the problem we address here is not one of excessive
curvature, but of a grid slightly canted with respect to the physical solution. Grid distorti
increases with a constant angular perturbation across a zone as the aspect ratio of tha
increases. The merit factor that we introduced was calibrated using this problem. Tha
we see the same effect with subzonal forces from Eq. (14) using triangles as we do f
Eq. (18) with subquadrilaterals if we multiply the subzonal forces of the latter by a fact
of two. Using subquadrilateral forces differenced with Eq. (16) gives a weaker effect
about another factor of two or more because of the averaging done by these force cont
when applied to this problem.

With regard to the form of the artificial viscosity used in the above example, we see fr
Fig. 12a that artificial viscosity alone was not effective in producing good results for tf
long-thin zone problem. However, the edge-centered viscosity used here [9] is genet
better for long-thin zone problems than a zone-centered form. This is because the motiol
the edges of a zone can be roughly uncorrelated if the zone is long and thin. In this inste
a zone-centered artificial viscosity will generally respond to a shock wave impacting ug
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any portion of the zone, instead of just that of an individual edge, and can lead to unwar
spurious motion of the zone as a whole. We conclude from these results that an artif
viscosity should only be used to resolve shock wave disturbances and not to, in addit
control spurious zone distortion; for the latter purpose artificial viscosity will often be four
to cause more harm than good.

Finally, the implosion problem of Lazarus [22] is run in cylindrical geometry using th
initial grid shown in Fig. 13a. In this problem a sphere of unit radius, unit density, and ze
internal energy initially, is driven by an inward radial velocity at the boundary with a tim
dependence that is calculated from a self-similar solution expressed as the answer 1
ODE problem [22]. An approximate form for this expression as well as the solution f
the density at our final time = 0.8 is given in [17]. Our initial grid consists of 51 radial
lines at equal angles on a 18f¥id, and 101 circular lines with centers displaced so that th
innermost circle lies at a false center of convergence that is 50% removed in radius from
center point of the outermost circle. It is this outermost circle that is driven with the veloc
boundary condition that is centered on the point (0., 0.). The false center of convergenc
allowed to move with a velocity that is an average of that of points which lie initially on th
circle next to it. This problem setup gives an extreme example of the general case whe
center of convergence is not known in advance. The results shown are performed witl
area-weight scheme [13, 17] using subzonal forces with a merit factor of 1.0.

The velocity vectors at the grid points and a contour plot of the density are given
timet = 0.7 in Figs. 13b, 13c. At this time the shock has moved past the false center
convergence and, from the velocity vectors, is headed for convergence at about the pr
point (0., 0.). The density contour shows a small perturbation about this false center,
the contours are still mostly circular. The shock wave converges at a point aratkie
just aftert = 0.75; this point is slightly to the left of (0., 0.) showing that the false cente
of convergence has slowed the shock wave down slightly. This can be clearly seel
Figs. 13d, 13e where we show the grid and a contour plot of the density at8 after the
shock has reflected off theaxis and is moving outward. Again, there is a small densit
perturbation at the false center of convergence. If this problem is run with this grid setup
without subzonal forces, the code will grid tangle and quit just as the shock wave interse
the false convergence center. A density contour plot for the same problem with ident
run parameters but using an initial grid that has all circles centered at point (0., 0.) is sh
at timet = 0.8 in Fig. 13f for comparison. This result is very close to the known solutio
[17] and preserves spherical symmetry to roundoff error. If the symmetric problem whc
result is given by Fig. 13f is run without subzonal pressure forces the resulting den:
profile will be virtually identical to that seen in this figure. The densities differ mostly in th
fourth significant digit indicating that the subzonal pressure effects are at truncation e
levels.

The point of this last comparison is that subzonal pressure forces remain at trunca
error levels for problems that have shock discontinuities but not strong differential g

FIG. 13. (a)Lazarusimplosion problem: initial grid showing false center of convergence. (b) Lazarus impl
sion problem: grid point velocity vectors at timhe= 0.7. (c) Lazarus implosion problem: contours of density at
timet = 0.7. (d) Lazarus implosion problem: grid at tirhe= 0.8. (e) Lazarus implosion problem: contours of
density at tima = 0.8. (f) Lazarus implosion problem: contours of density at time 0.8 using an initial grid
with all circles centered at point (0., 0.).
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distortions. For these cases the differences caused by these forces are no larger thar
that are seen due to truncation error when the spatial grid is refined by a factor of two.
only when differential disturbances at the grid scale lengths occur that these forces be
large. This is a kind of selective correction that prevents the introduction of spatial sc
that the Lagrangian grid following the fluid motion cannot adjust to and resolve. Th
kind of short spatial scales result in grid tangling whether they originate from hourgl
distortions on initially unit aspect ratio grids, as seen in the bending beam example, or
short scale distortions perpendicular to the main fluid flow as can occur for grids that t
long-thin zones, as seen in the Saltzman piston problem run with very high aspect

initial zoning. In instances when the fluid flow is such that the Lagrangian assumption

constant mass inside a given zone breaks down (for example, the beginning of turbule
then the grid still does not tangle but effectively binds, becoming very thin in one direct
with a consequent crash of the timestep resulting in run termination. This can be vie
as a form of artificial grid stiffening, but one that results from the fundamental assump
of a constant zonal mass being violated. The onset of this difficulty can be detecte!
progressively increasing values&f/ o, in time by an adjacent series of zones. This shoul
result in an effective automated criterion for when to either split these zones, introdu
additional dynamical points, or indicate how to move these points and flux in an effec
ALE scheme. This is a subject for future work.

What we wish to stress is that a large value of the merit factor in a given run d
not mean that subzonal forces are large in any sense compared to mean pressure
Likewise, a small value of the merit factor also does not mean that subzonal forces
small; they can be zeroth order no matter how the merit factor is reduced in the case w
the onset of turbulence is being approached. This all depends on the nature of the
flow. The important result is that the unphysical, or spurious, part of the velocity fielc
always counteracted. In all of these problems we have looked to see how large the sub
perturbed corner pressures become relative to the mean zone pressure. In most cas
over most of the grid this ratio is small, corresponding to what is expected from spe
truncation error. In problem regions of a calculation where the grid is trying to tear, 1
value can become much higher, ultimately to the point where it is zeroth order locall
order to prevent zone inversion. This occurs independently of the size of the merit fa
since the zone will simply distort a little more to make up for a smaller merit factor beft
grid inversion is prevented. For example, in the very high aspect ratio Saltzman pi
problem a very few zones along the shock front have values of perturbed corner pre:
that are 20% or more of the mean zone pressure.

Finally, we address the increased overhead associated with this algorithm. First, one
compute the volumes of the subzones in order to derive the subzonal densities. Depend
how one chooses to code the forces that result from the mean pressures the coordina
mesh may not need to be computed if subzonal forces are omitted, but for other inste
where preservation of certain symmetries is important this is still needed anyhow [17].
maximum of the perturbed corner pressure in a zone is added to the mean zone pressu
used to derive an effective zone sound speed from which the timestep is computed froi
usual CFL condition; however, the scale lengths used in computing this condition are
those of the entire zone and not those of the subzone volumes [13] so that the times
not really decreased much over that obtained without the subzonal pressures. The art
viscosity and material strength forces are unchanged. In the results presented he
require five calls to the equation of state for each zone, since we need the pressure ir
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subquad from which we subtract the zone mean pressure to @iptafior most equations
of state a good approximation &p can be simply obtained by settirip = c2(5p),
wherecs is the mean speed of sound in the zone 8nds the difference between the
subzone and zone densities; this has been tried and works well. A bit of variation in 1
guantity does not matter since, as has been discussed, there is not a strong sensitiv
the values of the merit factor, which can be allowed to vary from one zone to anotf
Thus, although this extra overhead will depend somewhat on the choices one make
implementation, generally it will be rather small, on the order of 10% to 20% on a pure hyc
timestep.

8. CONCLUSIONS

In this paper we have investigated the problem of anomalous grid distortion in Lagrang
algorithms that arise both from unresolved, high spatial frequency hourglass-type motic
and spurious grid vorticity generation that occurs at somewhat larger spatial grid sce
The extension of the Lagrangian assumption to include both the zonal and nodal mas
well as subzonal masses as the intersection of zone and node Lagrangian boundaries
the introduction of subzonal densities and pressures. This result gave rise to nondynan
points whose force contributions must be distributed to the dynamical points in some r
mentum conserving manner. It is the subzonal forces associated with these pressure
stabilize the Lagrangian grid with respect to spurious distortions. However, the manne
which these forces could be distributed to the dynamical points is nonunique, essenti
because the force now depends on the integration path taken through a given zone. Th
us to treat the subzonal forces as perturbations distinct from the mean pressure force
the zone, and to introduce a zone dependent “merit factor” that multiplies the magnit
of these forces. In the numerical examples it was shown that although this merit fac
could often be set to unity it was sometimes efficacious to make it larger or smaller t
this value; it can also be easily automated based on the magnitude of subzonal del
variation.

The procedure developed here is extremely simple to implement into existing coc
Although we have cast our development in the framework of compatible discretizatio
this need be done only for the subzonal force modification. In this case it is enough to f
choose a form for the perturbed corner foé¢g, say Eq. (18), that must be appropriately
computed and then summed about the dynamical points to obtain the total perturbed fc
8F,, that is employed in the momentum equation, Eq. (6). Finally, the work done by the
forces must be computed compatibly using the internal energy equation as given by Eq.
However, this last operation can be performed separately from the rest of the intel
energy update. Thus, the entire algorithm need not be in compatible form, although thi
the differencing that we recommend.

The main result of this work is to extend Lagrangian hydrocodes to the limit where t
assumption of a Lagrangian zonal mass breaks down, rather than have them quit pre
turely due to purely spurious numerical difficulties. The numerical results were aimed
showing that this has been achieved with a number of examples whose solutions are €
known analytically or well documented numerically, for both high-speed and low-spe
flow problems. While a properly constructed artificial viscosity can afford some mitigatic
of spurious grid distortion it was shown that the method presented here is much supe
while being nondissipative. The intention is that this work can be combined with advecti
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schemes when needed, as part of an ALE or other advective formulation, to simulate a
wide range of fluid flow problems.
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